[1]刘思琴,刘姗姗,王可,等.肝性脑病风险预测模型建立与验证的系统评价[J].军事护理,2021,38(02):60-63.[doi:10.3969/j.issn.1008-9993.2021.02.016]
 LIU Siqin,LIU Shanshan,WANG Ke,et al.Development and Validation of Hepatic Encephalopathy Risk Prediction Models: A Systematic Review[J].Nursing Journal Of Chinese People's Laberation Army,2021,38(02):60-63.[doi:10.3969/j.issn.1008-9993.2021.02.016]
点击复制

肝性脑病风险预测模型建立与验证的系统评价
分享到:

《军事护理》[ISSN:2097-1826/CN:31-3186/R]

卷:
38
期数:
2021年02期
页码:
60-63
栏目:
循证护理
出版日期:
2021-02-15

文章信息/Info

Title:
Development and Validation of Hepatic Encephalopathy Risk Prediction Models: A Systematic Review
文章编号:
1008-9993(2021)02-0060-05
作者:
刘思琴刘姗姗王可王小梅
(重庆医科大学附属第二医院 肝胆外科,重庆 400010)
Author(s):
LIU SiqinLIU ShanshanWANG KeWANG Xiaomei
(Department of Hepatobiliary Surgery,The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010,China)
关键词:
肝性脑病 预测模型 系统评价
Keywords:
hepatic encephalopathy prediction model systematic review
分类号:
R47
DOI:
10.3969/j.issn.1008-9993.2021.02.016
文献标志码:
A
摘要:
目的 系统评价肝性脑病风险预测模型建立与验证情况。方法 采用主题词和自由词结合,计算机检索PubMed、Embase、Cochrane、中国知网、万方医学网、维普等数据库建库至2020年5月发表的肝性脑病风险预测模型相关文献,由2名研究者独立阅读并筛选文献,采用临床预测模型的偏倚风险评估工具CHARMS清单对纳入文献进行质量评价。结果 共纳入11个研究,其中6个为前瞻性研究; 5个模型进行了外部验证,4个模型未进行内部或外部验证; 纳入研究的方法学质量评价偏倚风险较小; 纳入模型最常见的诱发因素和易感因素分别为肝性脑病病史和肝功能下降,白蛋白是常见的保护因子; 模型曲线下面积为0.68~0.93。结论 纳入的模型具有良好的预测效能,可帮助医护人员早期识别肝性脑病的高风险人群,但模型预测效果的外推性未得到有效评价,未来需开展进一步研究对模型进行外部验证。
Abstract:
Objective To systematically review the development and validation of hepatic encephalopathy risk prediction models.Methods The Cochrane Library,PubMed,Embase,CNKI,VIP,and Wan Fang Databases were electronically searched to collect studies on hepatic encephalopathy risk prediction model from inception to May 2020. Two reviewers independently screened and analysis the literature,evaluated the included studies according to the CHARMS checklist.Results A total of 11 studies were included,of which 6 were prospective studies. 5 models were externally verified,while 4 models were not internally or externally verified. The methodological quality evaluation of the included studies had low bias.The most common predisposing and precipitating factors included in the model were the history of hepatic encephalopathy and the decline in liver function. Albumin was a common protective factor. All studies reported the area under receiver of characteristic curve(AUROC)0.68-0.93.Conclusions The included model has good predictive performance and can help medical staff to identify high-risk groups of hepatic encephalopathy in early stage, but the extrapolation of the model's predictive effect has not been effectively evaluated, and further research is needed to verify the model externally in the future.

参考文献/References:

[1] ELWIR S,RAHIMI R S.Hepatic encephalopathy:an update on the pathophysiology and therapeutic options[J].J Clin Transl Hepatol,2017,5(2):142-151.
[2] LEISE M D,POTERUCHA J J,KAMATH P S,et al.Management of hepatic encephalopathy in the hospital[J].Mayo Clin Proc,2014,89(2):241-253.
[3] 张蕊,郑黎强,潘国伟.疾病发病风险预测模型的应用与建立[J].中国卫生统计,2015,32(4):724-726.
[4] 王娜,李娟,李霞,等.肝硬化患者肝性脑病风险预测模型的构建及应用研究[J].中华护理杂志,2019,54(6):805-811.
[5] RIGGIO O,AMODIO P,FARCOMENI A,et al.A model for predicting development of overt hepatic encephalopathy in patients with cirrhosis[J].Clin Gastroenterol Hepatol,2015,13(7):1346-1352.
[6] TAPPER E B,PARIKH N D,SENGUPTA N,et al.A risk score to predict the development of hepatic encephalopathy in a population-based cohort of patients with cirrhosis[J].Hepatology,2018,68(4):1498-1507.
[7] MOONS K G,DE GROOT J A H,BOUWMEESTER W,et al.Critical appraisal and data extraction for systematic reviews of prediction modelling studies:the CHARMS checklist[J/OL].[2020-09-28].https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001744.
[8] LABENZ C,TOENGES G,HUBER Y,et al.Development and validation of a prognostic score to predict covert hepatic encephalopathy in patients with cirrhosis[J].Am J Gastroenterol,2019,114(5):764-770.
[9] LABENZ C,TOENGES G,HUBER Y,et al.Raised serum interleukin-6 identifies patients with liver cirrhosis at high risk for overt hepatic encephalopathy[J].Aliment Pharmacol Ther,2019,50(10):1112-1119.
[10] CAMPAGNA F,MONTAGNESE S,RIDOLA L,et al.The animal naming test:an easy tool for the assessment of hepatic encephalopathy[J].Hepatology,2017,66(1):198-208.
[11]BHANJI R A,MOCTEZUMA-VELAZQUEZ C,DUARTE-ROJO A,et al.Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis[J].Hepatol Int,2018,12(4):377-386.
[12]AMODIO P,DEL PICCOLO-F,PETTENO E,et al.Prevalence and prognostic value of quantified electroencephalogram(EEG)alterations in cirrhotic patients[J].J Hepatol,2001,35(1):37-45.
[13]NARDELLI S,GIOIA S,RIDOLA L,et al.Proton pump inhibitors are associated with minimal and overt hepatic encephalopathy and increased mortality in patients with cirrhosis[J].Hepatology,2019,70(2):640-649.
[14]程璠,曹红艳,武希润,等.肝性脑病诱发因素的潜在类别模型与高危人群筛选[J].慢性病学杂志,2018,19(1):4-7.
[15]侯玉丽,高梦丹,郭鸿雁,等.白蛋白-胆红素指数与血氨联合检测对肝硬化并发肝性脑病的诊断价值评估[J].中华医学杂志,2018,98(2):127-131.
[16]石福艳.常见慢性病危险因素测量及风险等级评估方法研究[D].陕西:第四军医大学,2015.
[17]许传英.循证理论的预见性护理措施在肝性脑病患者中的应用效果[J].国际护理学杂志,2020,39(17):3201-3204.
[18]GRONKJAR L L,SEHSTEDT T H,NORLYK A,et al.Overt hepatic encephalopathy experienced by individuals with cirrhosis:a qualitative interview study[J].Gastroenterol Nurs,2018,41(6):468-476.
[19]WANG A J,PENG A P,LI B M,et al.Natural history of covert hepatic encephalopathy:an observational study of 366 cirrhotic patients[J].World J Gastroenterology,2017,23(34): 6321-6329.
[20]VILSTRUP H,AMODIO P,BAJAJ J,et al.Hepatic encephalopathy in chronic liver disease:2014 practice guideline by the American Association for the Study of Liver Diseases and the European[J].Hepatology,2014,60(2):715-735.
[21]AMPUERO J,MONTOLIU C,SIMON-TALERO M,et al.Minimal hepatic encephalopathy identifies patients at risk of faster cirrhosis progression[J].J Gastroenterol Hepatol,2018,33(3):718-725.
[22]LABENZ C,ADARKWAH C C,WORNS M A,et al.Management of hepatic encephalopathy in Germany: a survey among physicians[J].Z Gastroenterol,2020,58(1):49-56.
[23]中华医学会肝病学分会.肝硬化肝性脑病诊疗指南[J].中华内科杂志,2018,57(10):705-718.
(本文编辑:郁晓路)

相似文献/References:

[1]杨霞,李国宏,崔颖.泌尿外科达芬奇机器人手术患者术中低体温风险预测模型的构建及应用研究[J].军事护理,2021,38(09):33.[doi:10.3969/j.issn.1008-9993.2021.09.008]
 YANG Xia,LI Guohong,CUI Ying.Establishment and Application of a Risk Prediction Model Concerning Intraoperative Hypothermia for Patients undergoing Da Vinci Robotic Surgery in Urology Department[J].Nursing Journal Of Chinese People's Laberation Army,2021,38(02):33.[doi:10.3969/j.issn.1008-9993.2021.09.008]
[2]史广玲,徐建珍,刘夕珍,等.重症监护病房患者大便失禁相关性皮炎预测风险模型的建立和验证[J].军事护理,2021,38(11):37.[doi:10.3969/j.issn.1008-9993.2021.11.010]
 SHI Guangling,XU Jianzhen,LIU Xizhen,et al.Development and Validation of A Predictive Risk Model for Fecal Incontinence Associated Dermatitis in ICU Patients[J].Nursing Journal Of Chinese People's Laberation Army,2021,38(02):37.[doi:10.3969/j.issn.1008-9993.2021.11.010]
[3]邹琦,段慧茹,万鑫柯,等.急性心肌梗死患者院前延迟风险预测模型的构建及评价[J].军事护理,2022,39(02):34.[doi:10.3969/j.issn.1008-9993.2022.02.009]
 ZOU Qi,DUAN Huiru,WAN Xinke,et al.Construction and Evaluation of Prehospital Delayed Risk Prediction Model in Patients with Acute Myocardial Infarction[J].Nursing Journal Of Chinese People's Laberation Army,2022,39(02):34.[doi:10.3969/j.issn.1008-9993.2022.02.009]
[4]许莹莹,朱蓓,阎蕾,等.成人造口旁疝风险预测列线图模型的构建[J].军事护理,2022,39(03):70.[doi:10.3969/j.issn.1008-9993.2022.03.017]
 XU Yingying,ZHU Bei,YAN Lei,et al.Development of A Nomogram Model for Predicting the Risk of Parastomal Hernia in Adults[J].Nursing Journal Of Chinese People's Laberation Army,2022,39(02):70.[doi:10.3969/j.issn.1008-9993.2022.03.017]
[5]李好正,李梦媛,肖抒情,等.脑肿瘤患者术后误吸风险预测模型的构建[J].军事护理,2022,39(08):54.[doi:10.3969/j.issn.2097-1826.2022.08.014]
 LI Haozheng,LI Mengyuan,XIAO Shuqing,et al.Construction of Postoperative Aspiration Risk Prediction Model for Brain Tumor Patients[J].Nursing Journal Of Chinese People's Laberation Army,2022,39(02):54.[doi:10.3969/j.issn.2097-1826.2022.08.014]
[6]李祎涵,沈南平,孙霁雯,等.基于自我报告的肿瘤化疗患儿发热性中性粒细胞减少风险预测模型的构建[J].军事护理,2022,39(12):26.[doi:10.3969/j.issn.2097-1826.2022.12.007]
 LI Yihan,SHEN Nanping,SUN Jiwen,et al.Construction of a Risk Predictive Model for Febrile Neutropenia in Children with Tumors Chemotherapy Based on Patient-reported Tool[J].Nursing Journal Of Chinese People's Laberation Army,2022,39(02):26.[doi:10.3969/j.issn.2097-1826.2022.12.007]
[7]曹思敏,谢小华,滕丽婷,等.急性缺血性卒中后认知障碍预测模型的研究现状[J].军事护理,2023,40(01):45.[doi:10.3969/j.issn.2097-1826.2023.01.011]
 CAO Simin,XIE Xiaohua,TENG Liting,et al.Prediction Models of Cognitive Impairment after Acute Ischemic Stroke:A Review[J].Nursing Journal Of Chinese People's Laberation Army,2023,40(02):45.[doi:10.3969/j.issn.2097-1826.2023.01.011]
[8]张鑫宇,张磊,隋汝波.基于Logistic回归和人工神经网络构建老年脑卒中患者衰弱预测模型[J].军事护理,2023,40(02):10.[doi:10.3969/j.issn.2097-1826.2023.02.003]
 ZHANG Xinyu,ZHANG Lei,SUI Rubo.Prediction Model for Frailty in Elderly Stroke Patients Based on Logistic Regression and Artificial Neural Network[J].Nursing Journal Of Chinese People's Laberation Army,2023,40(02):10.[doi:10.3969/j.issn.2097-1826.2023.02.003]
[9]王瑜,黄纯兰,鞠梅.中老年急性白血病患者医院感染预测模型构建及验证[J].军事护理,2023,40(02):33.[doi:10.3969/j.issn.2097-1826.2023.02.008]
 WANG Yu,HUANG Chunlan,JU Mei.Construction and Validation of Nosocomial Infection Prediction Model in Middle-aged and Elderly Patients with Acute Leukemia[J].Nursing Journal Of Chinese People's Laberation Army,2023,40(02):33.[doi:10.3969/j.issn.2097-1826.2023.02.008]
[10]王银荣,邱晓堂,潘莉.糖尿病足溃疡患者愈合后复发的影响因素分析及风险预测模型构建[J].军事护理,2023,40(05):62.[doi:10.3969/j.issn.2097-1826.2023.05.015]
 WANG Yinrong,QIU Xiaotang,PAN Li.Development of A Prediction Model for Recurrence of Healing Diabetic Foot Ulcer[J].Nursing Journal Of Chinese People's Laberation Army,2023,40(02):62.[doi:10.3969/j.issn.2097-1826.2023.05.015]

备注/Memo

备注/Memo:
【 收稿日期 】 2020-10-28 【 修回日期 】 2021-01-09
【 基金项目 】 重庆市技术创新与应用发展项目(cstc2019jscx-msxmX0117)
【 作者简介 】 刘思琴,硕士在读,护师,从事慢性肝病管理研究
【 通讯作者 】 王小梅,电话:023-62887551
更新日期/Last Update: 2021-02-15