[1]万君丽,卞薇.人工智能在慢性病患者营养精准管理领域中的应用进展[J].军事护理,2023,40(10):92-95.[doi:10.3969/j.issn.2097-1826.2023.10.022]
点击复制

人工智能在慢性病患者营养精准管理领域中的应用进展
分享到:

《军事护理》[ISSN:2097-1826/CN:31-3186/R]

卷:
40
期数:
2023年10期
页码:
92-95
栏目:
综述
出版日期:
2023-10-15

文章信息/Info

Title:
Application Progress of Artificial Intelligence in the Field of Nutrition Precise Management of Patients with Chronic Diseases
文章编号:
2097-1826(2023)10-0092-04
作者:
万君丽卞薇
(陆军军医大学第一附属医院 眼科,重庆 400038)
关键词:
人工智能 慢性病患者 营养
分类号:
R472.9
DOI:
10.3969/j.issn.2097-1826.2023.10.022
文献标志码:
A

参考文献/References:

[1] 国务院办公厅.国务院办公厅关于印发国民营养计划(2017-2030年)的通知[J].中国食品卫生杂志,2017,29(4):514-518.
[2] RAMOS-LOPEZ O,MILTON-LASKIBAR I,MARTíNEZ J A.Precision nutrition based on phenotypical traits and the(epi)genotype:nutrigenetic and nutrigenomic approaches for obesity care[J].Curr Opin Clin Nutr Metab Care,2021,24(4):315-325.
[3] RAMOS-LOPEZ O,MILAGRO F I,ALLAYEE H,et al.Guide for current nutrigenetic,nutrigenomic,and nutriepigenetic approaches for precision nutrition involving the prevention and management of chronic diseases associated with obesity[J].J Nutrigenet Nutrigenomics,2017,10(1-2):43-62.
[4] 谢颖,童立纺,赵庆华.医养结合机构慢性病老人健康促进生活方式与生活质量的相关性研究[J].解放军护理杂志,2020,37(9):1-4.
[5] BUSH C L,BLUMBERG J B,EL-SOHEMY A,et al.Toward the definition of personalized nutrition:a proposal by the American nutrition association[J].J Am Coll Nutr,2020,39(1):5-15.
[6] LIMKETKAI B N,MAULDIN K,MANITIUS N,et al.The age of artificial intelligence:use of digital technology in clinical nutrition[J/OL].[2023-01-20].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186363/.DOI:10.1007/s40137-021-00297-3.
[7] 杜妍莹,董鼎辉,马锋,等.人工智能在护理领域的应用进展[J].解放军护理杂志,2019,36(4):58-61.
[8] ELDRIDGE A L,PIERNAS C,ILLNER A K,et al.Evaluation of new technology-based tools for dietary intake assessment-an ILSI Europe dietary intake and exposure task force evaluation[J/OL].[2023-01-20].https://www.mdpi.com/2072-6643/11/1/55.DOI:10.3390/nu11010055.
[9] ALI Z C,SILVIOLI R,RAJAI A,et al.Feasibility of use of a mobile application for nutrition assessment pertinent to age-related macular degeneration(MANAGER2)[J/OL].[2023-01-20].https://tvst.arvojournals.org/article.aspx?articleid=2598415.DOI:10.1167/tvst.6.1.4.
[10]王军敏,樊养余,李祖贺.基于深度卷积神经网络和迁移学习的纹理图像识别[J].计算机辅助设计与图形学学报,2022,34(5):701-710.
[11]WANG Y,WU J,DENG H,et al.Food image recognition and food safety detection method based on deep learning[J/OL].[2023-01-20].https://www.hindawi.com/journals/cin/2021/1268453/.DOI:10.1155/2021/1268453.
[12]MARTIN C K,CORREA J B,HAN H,et al.Validity of the remote food photography method(RFPM)for estimating energy and nutrient intake in near real-time[J].Obesity(Silver Spring),2012,20(4):891-899.
[13]MEZGEC S,SELJAK B K.Deep neural networks for image-based dietary assessment[J/OL].[2023-02-04].https://www.jove.com/cn/t/61906/deep-neural-networks-for-image-based-dietary-assessment.DOI:10.3791/61906.
[14]DEGREGORY K W,KUIPER P,DESILVIO T,et al.A review of machine learning in obesity[J].Obes Rev,2018,19(5):668-685.
[15]FINKELSTEIN E A,KHAVJOU O A,THOMPSON H,et al.Obesity and severe obesity forecasts through 2030[J].Am J Prev Med,2012,42(6):563-570.
[16]ERGÜN U.The classification of obesity disease in logistic regression and neural network methods[J].J Med Syst,2009,33(1):67-72.
[17]KARIMI-ALAVIJEH F,JALILI S,SADEGHI M.Predicting metabolic syndrome using decision tree and support vector machine methods[J].ARYA Atheroscler,2016,12(3):146-152.
[18]PANARETOS D,KOLOVEROU E,DIMOPOULOS A C,et al.A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk(2002-2012): the ATTICA study[J].Br J Nutr,2018,120(3):326-334.
[19]ZEEVI D,KOREM T,ZMORA N,et al.Personalized nutrition by prediction of glycemic responses[J].Cell,2015,163(5):1079-1094.
[20]AGARWAL P,MUKERJI G,DESVEAUX L,et al.Mobile App for improved self-management of type 2 diabetes:multicenter pragmatic randomized controlled trial[J/OL].[2023-02-04].https://mhealth.jmir.org/2019/1/e10321/.DOI:10.2196/10321.
[21]HALLSWORTH K,MCPHERSON S,ANSTEE Q M,et al.Digital intervention with lifestyle coach support to target dietary and physical activity behaviors of adults with nonalcoholic fatty liver disease:systematic development process of VITALISE using intervention mapping[J/OL].[2023-02-04].https://www.jmir.org/2021/1/e20491/.DOI:10.2196/20491.
[22]BERMAN M A,GUTHRIE N L,EDWARDS K L,et al.Change in glycemic control with use of a digital therapeutic in adults with type 2 diabetes: cohort study[J/OL].[2023-02-10].https://diabetes.jmir.org/2018/1/e4/.DOI:10.2196/diabetes.9591.
[23]OKA R,NOMURA A,YASUGI A,et al.Study protocol for the effects of artificial intelligence(AI)-supported automated nutritional intervention on glycemic control in patients with type 2 diabetes mellitus[J].Diabetes Ther,2019,10(3):1151-1161.
[24]林旭,张旭光.精准营养白皮书[M/OL].[2023-01-30].https://max.book118.com/html/2022/0916/6145022015004240.shtm.
[25]BOUSHEY C J,SPODEN M,ZHU F M,et al.New mobile methods for dietary assessment:review of image-assisted and image-based dietary assessment methods[J].Proc Nutr Soc,2017,76(3):283-294.
[26]ZHANG D,CHENG X,SUN D,et al.Additive Chem:a comprehensive bioinformatics knowledge-base for food additive chemicals[J/OL].[2023-02-23].https://linkinghub.elsevier.com/retrieve/pii/S0308-8146(19)31637-1.DOI:10.1016/j.foodchem.2019.125519.
[27]ZHANG D,GONG L,DING S,et al.FRCD: A comprehensive food risk component database with molecular scaffold,chemical diversity,toxicity,and biodegradability analysis[J/OL].[2023-02-23].https://linkinghub.elsevier.com/retrieve/pii/S0308-8146(20)30332-0.DOI:10.1016/j.foodchem.2020.126470.
[28]ZHANG D,OUYANG S,CAI M,et al.FADB-China:a molecular-level food adulteration database in China based on molecular fingerprints and similarity algorithms prediction expansion[J/OL].[2023-02-23].https://linkinghub.elsevier.com/retrieve/pii/S0308-8146(20)30872-4.DOI:10.1016/j.foodchem.2020.127010.
[29]CHATELAN A,BOCHUD M,FROHLICH K L.Precision nutrition:hype or hope for public health interventions to reduce obesity?[J].Int J Epidemiol,2019,48(2):332-342.
[30]GAN J,SIEGEL J B,GERMAN J B.Molecular annotation of food-towards personalized diet and precision health[J].Trends Food Sci Technol,2019,91:675-680.

相似文献/References:

[1]张山,崔薇,吴瑛.人工智能在老年照护中的研究热点与发展趋势[J].军事护理,2022,39(12):47.[doi:10.3969/j.issn.2097-1826.2022.12.012]
 ZHANG Shan,CUI Wei,WU Ying.Research Hotspot and Trends of Artificial Intelligence Application in Elderly Care[J].Nursing Journal Of Chinese People's Laberation Army,2022,39(10):47.[doi:10.3969/j.issn.2097-1826.2022.12.012]
[2]史纪元,罗家音,王雪莲,等.国内外人工智能护理相关研究热点和趋势分析[J].军事护理,2023,40(07):16.[doi:10.3969/j.issn.2097-1826.2023.07.004]
 SHI Jiyuan,LUO Jiayin,WANG Xuelian,et al.Research Hotspots and Trends of Artificial Intelligence in Nursing at Home and Abroad[J].Nursing Journal Of Chinese People's Laberation Army,2023,40(10):16.[doi:10.3969/j.issn.2097-1826.2023.07.004]
[3]彭雨馨,付光蕾.人工智能在感染伤口管理中的应用进展[J].军事护理,2023,40(12):85.[doi:10.3969/j.issn.2097-1826.2023.12.021]

备注/Memo

备注/Memo:
【收稿日期】2023-02-23【修回日期】2023-09-05
【基金项目】重庆市科卫联合医学科研项目(2020FYYX052); 陆军军医大学优秀人才库重点扶持对象个性化培养方案(XZ-2019-5-5-054)
【作者简介】万君丽,本科,主管护师,电话:023-68766261
【通信作者】卞薇,电话:023-68766235
更新日期/Last Update: 2023-10-15