[1]杨霞,李国宏,崔颖.泌尿外科达芬奇机器人手术患者术中低体温风险预测模型的构建及应用研究[J].军事护理,2021,38(09):33-36.[doi:10.3969/j.issn.1008-9993.2021.09.008]
 YANG Xia,LI Guohong,CUI Ying.Establishment and Application of a Risk Prediction Model Concerning Intraoperative Hypothermia for Patients undergoing Da Vinci Robotic Surgery in Urology Department[J].Nursing Journal Of Chinese People's Laberation Army,2021,38(09):33-36.[doi:10.3969/j.issn.1008-9993.2021.09.008]
点击复制

泌尿外科达芬奇机器人手术患者术中低体温风险预测模型的构建及应用研究
分享到:

《军事护理》[ISSN:2097-1826/CN:31-3186/R]

卷:
38
期数:
2021年09期
页码:
33-36
栏目:
论著
出版日期:
2021-09-15

文章信息/Info

Title:
Establishment and Application of a Risk Prediction Model Concerning Intraoperative Hypothermia for Patients undergoing Da Vinci Robotic Surgery in Urology Department
文章编号:
1008-9993(2021)09-0033-04
作者:
杨霞1李国宏2崔颖1
(1.东南大学附属中大医院 手术室,江苏 南京 210009; 2.东南大学医学院 护理系,江苏 南京 210009)
Author(s):
YANG Xia1LI Guohong2CUI Ying1
(1.Department of Operating Room,The Zhongda Hospital Affiliated Southeast University,Nanjing 210009,Jiangsu Province,China; 2.Department of Nursing,School of Medicine,Southeast University,Nanjing 210009,Jiangsu Province,China)
关键词:
达芬奇机器人 低体温 预测模型 手术室护理
Keywords:
Da Vinci robot hypothermia predictive model operating room nursing
分类号:
R473.58
DOI:
10.3969/j.issn.1008-9993.2021.09.008
文献标志码:
A
摘要:
目的 探讨泌尿外科达芬奇机器人手术患者术中低体温的影响因素,建立风险预测模型,并对应用效果进行检验。方法 采用病例对照研究方法,回顾性分析2019年1月至2020年3月某院泌尿外科接受达芬奇机器人手术的患者,其中发生低体温事件的72例列为低体温组,另以1:3配比选取同时期216例阴性病例为非低体温组,对比各项危险因子,利用Logistic回归构建预测模型,采用Hosmer-Lemeshow检验判定模型的拟合优度、受试者工作特征曲线(receiver operating characteristic curve,ROC)检测模型的预测效能。结果 最终进入预测模型的因子包括:基础体温、体质量指数、室温、麻醉时间、主动保温持续时间。模型的H-L检验P=0.475,ROC曲线下面积为0.837,灵敏度为0.766,特异度为0.829,模型实际应用的总体正确率为81.3%。结论 该风险预测模型效果良好,可为临床医护人员筛查机器人手术患者术中低体温高危患者并采取预防性措施提供参考。
Abstract:
Objective To explore the influencing factors of intraoperative hypothermia among patients undergoing Da Vinci robotic surgery in urology department,establish a risk prediction model and test its application effects.Methods The case control study method was adopted.The patients who underwent Da Vinci robotic surgery in the urology department of a hospital from January,2019 to March,2020 were retrospectively reviewed,and 72 of them with intraoperative hypothermia were defined as the hypothermia group.According to the ratio of 1:3,216 patients without intraoperative hypothermia at the same time were defined as the non-hypothermia group.Risk factors were compared to establish the prediction model using the Logistic regression analysis.The goodness of the fit and predictive validity of the model were verified by the Hosmer-Lemeshow test and the ROC curve,respectively.Results Factors in the prediction model included basic body temperature,body mass index,room temperature,anesthesia time and duration of subjective heat preservation.The P value of H-L test for the model was 0.475.The area under the ROC curve was 0.837.The sensitivity and specificity were 0.766 and 0.829,respectively.The overall accuracy of the model in the application was 81.3%.Conclusions Effects of the risk prediction model were good.It can provide reference for clinical medical staff to screen the patients at a high risk of intraoperative hypothermia in Da Vinci robotic surgery and take preventive measures.

参考文献/References:

[1] GABRIEL P,HOCKER J,STEINFATH M,et al.Prevention of inadvertent perioperative hypothermia-guideline compliance in German hospitals[J].Ger Med Sci,2019; 17:7.
[2] YI J,LEI Y,XU S,et al.Intraoperative hypothermia and its clinical outcomes in patients undergoing general anesthesia:national study in China[J].PLoS One,2017,12(6):e0177221.
[3] 余文静,肖瑶,胡娟娟,等.预防围手术期患者低体温的最佳证据总结[J].中华护理杂志,2019,54(4):589-594.
[4] 马正良,易杰.围手术期患者低体温防治专家共识(2017)[J].协和医学杂志,2017,8(6):352-358.
[5] 刘燕梅,李莲英,李雪清.术中低体温的危险因素和防护措施研究进展[J].护士进修杂志,2020,35(5):440-443.
[6] 王林辉.机器人辅助腹腔镜技术在泌尿外科的临床应用:中国15年数据分析[J].第二军医大学学报,2020,41(07):697-700.
[7] 崔颖,李国宏,杨霞,等.手术室亚专科体温保护标准化管理方案在泌尿外科机器人手术 的应用研究[J].解放军护理杂志,2021,38(6):13-16.
[8]SCOTT A,STONEMETZ J,WASEY J,et al.Compliance with surgical care improvement project for body temperature management(SCIP inf-10)is associated with improved clinical outcomes[J].Anesthesiol,2015,123(1):116-125.
[9] LENHARDT R,MARKER E,GOLL V,et al.Mild intraoperative hypothermia prolongs postanesthetic recovery[J].Anesthesiology,1997,87(6):1318-1323.
[10]严露培,姚丽丽,李跃荣,等.手术患者非计划性术中低体温风险预测模型研究进展[J].护理学报,2021,28(06):13-16.
[11]普鹰,张莹,汤佳骏,等.腹腔镜手术患者术中低体温预测模型的构建及应用[J].中华护理杂志,2019,54(9):1308-1312.
[12]国家麻醉专业质量控制中心 中华医学会麻醉学分会.围手术期患者低体温防治专家共识(2017)[J].协和医学杂志,2017,8(6):352-358.
[13]孔青,朱薇薇,潘迎春.麻醉恢复室低体温发生的危险因素及风险预测模型分析[J].护士进修杂志,2021,36(6):563-566.
[14]MATSUKAWA T,SESSLER D,SESSLER A,et al.Heat flow and distribution during induction of general anesthesia[J].Anesthesiology,1995,82(3):662-673.
[15]孔珊珊,邓露,申海艳,等.剖宫产产妇术中低体温风险预测模型的构建及应用效果研究[J].中华护理杂志,2021,56(2):165-171.
[16]YOO JAE H W A,OK SI Y,KIM SANG H O,et al.Efficacy of active forced air warming during induction of anesthesia to prevent inadvertent perioperative hypothermia in intraoperative warming patients:comparison with passive warming,a randomized controlled trial[J].Medicine,2021,100(12):e25235-e25235.
[17]孙亮,高倩,王广,等.麻醉后恢复室期间全身麻醉患者发生低体温的影响因素[J].中华医学杂志,2021,101(1):52-56.
(本文编辑:陈晓英)

相似文献/References:

[1]梅润,何乾峰,徐璐瑶,等.基于决策树构建急诊创伤患者低体温早期预警模型及验证[J].军事护理,2023,40(05):14.[doi:10.3969/j.issn.2097-1826.2023.05.004]
 MEI Run,HE Ganfeng,XU Luyao,et al.Development of An Early Warning Model for Predicting Hypothermia among Emergency Trauma Patients Using Decision Tree Analysis[J].Nursing Journal Of Chinese People's Laberation Army,2023,40(09):14.[doi:10.3969/j.issn.2097-1826.2023.05.004]

备注/Memo

备注/Memo:
【 收稿日期 】 2021-05-11 【 修回日期 】 2021-08-09
【 基金项目 】 南京市卫生科技发展专项资金项目(YKK20238); 东南大学附属中大医院护理科研资助项目(ZDYYHL2019-02)
【 作者简介 】 杨霞,硕士,护师,从事手术室临床护理工作
【 通信作者 】 李国宏,电话:025-83272077
更新日期/Last Update: 2021-09-15